LogoLogo
Navigate?
  • XXX!
    • Frequently Asked XQuestions
  • YYY!
    • Advanced: Help me troubleshoot weird build problems
    • Advanced: Help me troubleshoot weird camera problems
  • ZZZ!
    • Basic Chatgpt ROS interface
    • Camera Calibration
    • Claw Movement
    • Computer Vision With Yolo8a
    • Connecting to the robot
    • Creating and Executing Launch Files
  • FIIVA
    • Download File From vscode
    • Edge Detection
    • Finding HSV values for any color
    • Finding correct color for line following
    • GPS Data with iPhone (GPS2IP)
    • How can I calculate a better way to rotate?
    • How do I attach a Bluetooth headset?
    • How do I control AWS RoboMaker?
    • How do I control the Arm
    • How do I convert Imagenet to Darknet
    • How do I create a Gazebo world
    • How do I create a ROS UI with TkInter?
    • How do I creating a gazebo world
    • How do I deploy a Pytorch model our cluster?
    • How do I move a file from my vnc and back?
    • How do I read a BDLC motor spec sheet
    • How do I set up AprilTags
    • How do I set up a USB camera?
    • How do I set up the Astra Pro Depth Camera?
    • How do I setup to Coral TPU
    • How do I spawn an animated Human?
    • How do I use Alexa Flask-ASK for ROS
    • How do I use OpenCV and Turtlebot3 Camera
    • How do I use Parameters and Arguments in ROS?
    • How do I use a sigmoid function instead of a PID
    • How do I visualize the contents of a bag
    • How do you use UDP to communicate between computers?
    • How does GPS work?
    • How to Copy a MicroSD
    • How to add an SDF Model
    • How to approach computer vision
    • How to connect to multiple robots
    • How to define and Use your own message types
    • Interbotix Pincher X100 Arm
    • PID-guide.md
    • PX-100 Arm ROS2 Setup
    • Pincer Attachment
    • ROSBridge and ROSLIBJS
    • Recognizing Objects Based on Color and Size using OpenCV
    • Reinforcement Learning and its Applications
    • Robot Arm Transforms
    • Running Multi Robot in Gazebo and Real Robot
    • Simplifying_Lidar.md
    • Spawning Multiple Robots
    • Tips for using OpenCV and Cameras
    • Using ROS2 with Docker
    • What are some Computer Vision Tips
    • What are the ROS Message Types
    • Why does roscd go wrong?
    • Why is my robot not moving?
    • Working with localStorage in React for web clients
    • bouncy-objects.md
    • camera-performance-notes.md
    • camera_pitch.md
    • change_model_color.md
    • communicate-with-rosserial.md
    • contribution-guide.md
    • customize_tb3.md
    • diy-gazebo-world.md
    • fiducial-tips.md
    • fiducial_follows.md
    • gazebo_tf.md
    • gazebo_world.md
    • handy-commands.md
    • how-to-add-texture-to-sdf.md
    • how_to_get_correct_color_for_line_following.md
    • joint-controllers.md
    • laserscan-definition-modify.md
    • launch-files.md
    • lidar_placement_and_drift.md
    • logging.md
    • model_teleportation.md
    • modular_teleop.md
    • multi-robot-one-core.md
    • multirobot-map-merge.md
    • namespacing-tfs.md
    • object_detection_yolo_setup.md
    • publish_commands_to_commandline.md
    • quaternions.md
    • reset-world-gazebo.md
    • robot multitasking
    • ros_and_aws_integration.md
    • rosbridge.md
    • rviz-markers.md
    • sdf_to_urdf.md
    • spawn_model_terminal.md
    • using-conditionals-in-roslaunch.md
    • ROS and TkInter
    • Brandeis Robotics Utility
      • Controlling Robots from VNC
      • BRU Concepts
      • Commands
      • Standard ROSUTILS directory everywhere
      • script.md
    • Cosi119 Final Reports!
      • 2023
        • Autopilot
        • Bowling Bot
        • Cargo Claw
        • Command and Control Dashboard
        • Dynamaze
        • Guard Robot
        • Multi Robot Surveilance
        • Object Sorter
        • Robot Race
        • Typenator
      • 2022
        • NASCAR-style-turtlebot-racing.md
        • RoboTag.md
        • litter_picker.md
        • mini_scouter.md
        • not-play-catch.md
        • Waiterbot
      • 2020
        • Behavior Trees Investigatoin
        • Computer Vision Maze Solver
        • FiducialSLAM.md
        • Gesture Recognition
          • color.md
          • demo.md
          • gestures.md
          • kinect.md
          • kinectv2.md
          • leap-motion.md
          • leap_motion.md
          • local-camera.md
          • ssd.md
        • dangersigns.md
        • pathplanning.md
        • reinforcement-learning-racer.md
        • stalkerbot.md
      • 2019
        • robot-arm.md
      • Sample Project Template
      • past-gen-letters.md
    • Brandeis Rover Cluster
      • intro.md
      • operation-guide
        • architecture.md
        • cluster.md
        • faq.md
        • graphs
        • graphs.md
        • image.md
        • lifecycle.md
        • nodes.md
        • operating
          • cluster.md
          • users.md
        • sources.md
      • user-guide
        • code-editor.md
        • desktop-ui.md
        • getting-started.md
    • Robots in our Lab
      • linorobot
        • Platform Hardware Specs
        • connections.md
        • howto.md
        • stack.md
        • troubleshooting.md
        • validating.md
      • minirover
        • mrbuild.md
        • mrsetup.md
        • mrtroubleshooting.md
        • mruse.md
      • platform
      • platform.md
      • pupper
        • boundary-generation.md
        • controls.md
        • fiducial-detection.md
        • hardware.md
        • introduction.md
        • planning.md
        • software-overview.md
        • software-setup.md
        • testing.md
    • Campus Rover Packages
      • C3 Architecture Notes
      • Campus Rover V 3
      • campus-rover-4
        • Working with TIVAC
        • progress-report.md
      • demos
        • demo-script-fall-2018.md
        • gen2-demo-instructions.md
      • mutant
        • Description of Mutant
        • mutant-usage.md
        • mutantsetup.md
        • raspicam.md
      • navigation
        • costmap-clearing
          • costmap-clearing-part-1.md
          • costmap-clearing-part-2.md
        • cpu-usage-and-errors-in-navigation.md
        • fiducials.md
        • floormapping.md
        • lost-and-found.md
      • nodes.md
      • package-delivery
        • talker-node.md
      • state-management-services.md
      • voice
        • [voice integration.md](./cr-package/voice/voice integration.md)
        • voice-integration.md-.-cr-package-voice-voice-integration.md.md
        • voice.md
      • web-application
        • Integrating using Flask and ROS
        • flask.md
        • livemap.md
    • Lab Infrastructure
      • Tailscale VPN
      • Creating a bootable SSD
      • Danger Signs with Batteries and Chargers
      • How to use the Rover Cluster
      • Setting up SSH on a new robot
      • Turtlebot3s.md
      • copying-robot-sd-cards.md
      • external-ssd-instructions
      • external-ssd-instructions.md
      • linux_terminal_eduroam_setup.md
      • multi-robot-infrastructure.md
      • networking.md
      • our-robots.md
      • private-networking.md
      • ros-melodic.md
      • setup-hints.md
      • ubuntubrandeis.md
    • Our ROS Packages
      • Behavior Trees
        • Nodes
        • Visualization of the behavior Tree
        • basic_movement.md
        • build
          • defining_blackboard.md
          • defining_nodes.md
          • defining_references.md
        • custom_nodes
          • custom_action.md
          • custom_conditional.md
          • custom_update.md
        • included_nodes
          • action_nodes.md
          • conditional_nodes.md
          • included_nodes.md
          • parent_nodes.md
          • update_nodes.md
        • nodes
          • leaf_nodes.md
          • parent_nodes.md
      • Speech Recognition Report
Powered by GitBook

Copyright (c) Brandeis University

On this page
  • Related Nodes
  • Overview
  • Demo
  • Ben Albert 12/16/18

Was this helpful?

Edit on GitHub
Export as PDF
  1. FIIVA
  2. Campus Rover Packages

package-delivery

Related Nodes

  • package_handler.py

  • package_sender.py

  • recording_sender.py

Overview

The package delivery stack is comprised of one main node, package_handler.py, and two secondary nodes package_sender.py and recording_sender.py. Each secondary node corresponds to a type of package that can be handled by the handler (the current implementation supports physical packages on top of the robot, and voice recordings recorded on the on-board laptop. Each secondary node (when pinged on its respective topic) generates a file with a specific suffix (.package and .wav respectively) that will be processed accordingly by the package handler. Each file type has an associated package release protocol, which removes the package filename from the packages queue (maintained by the handler node).

Demo

  • Run recording_sender.py on-board (so computer microphone is accessed)

  • Run package_handler.py and package_sender.py

  • After navigating to the package sender (wait for WAITING state) place package on the robot

  • After being prompted, hold down B0, B1, or B2 on the robot's base to record a message

  • Send the robot a delivery navigation goal

  • Once the robot has reached the goal (wait for WAITING state) pick up the package. The robot will also play back the audio recording

  • After the

Ben Albert 12/16/18

Previousnodes.mdNexttalker-node.md

Last updated 1 year ago

Was this helpful?