LogoLogo
Navigate?
  • XXX!
    • Frequently Asked XQuestions
  • YYY!
    • Advanced: Help me troubleshoot weird build problems
    • Advanced: Help me troubleshoot weird camera problems
  • ZZZ!
    • Basic Chatgpt ROS interface
    • Camera Calibration
    • Claw Movement
    • Computer Vision With Yolo8a
    • Connecting to the robot
    • Creating and Executing Launch Files
  • FIIVA
    • Download File From vscode
    • Edge Detection
    • Finding HSV values for any color
    • Finding correct color for line following
    • GPS Data with iPhone (GPS2IP)
    • How can I calculate a better way to rotate?
    • How do I attach a Bluetooth headset?
    • How do I control AWS RoboMaker?
    • How do I control the Arm
    • How do I convert Imagenet to Darknet
    • How do I create a Gazebo world
    • How do I create a ROS UI with TkInter?
    • How do I creating a gazebo world
    • How do I deploy a Pytorch model our cluster?
    • How do I move a file from my vnc and back?
    • How do I read a BDLC motor spec sheet
    • How do I set up AprilTags
    • How do I set up a USB camera?
    • How do I set up the Astra Pro Depth Camera?
    • How do I setup to Coral TPU
    • How do I spawn an animated Human?
    • How do I use Alexa Flask-ASK for ROS
    • How do I use OpenCV and Turtlebot3 Camera
    • How do I use Parameters and Arguments in ROS?
    • How do I use a sigmoid function instead of a PID
    • How do I visualize the contents of a bag
    • How do you use UDP to communicate between computers?
    • How does GPS work?
    • How to Copy a MicroSD
    • How to add an SDF Model
    • How to approach computer vision
    • How to connect to multiple robots
    • How to define and Use your own message types
    • Interbotix Pincher X100 Arm
    • PID-guide.md
    • PX-100 Arm ROS2 Setup
    • Pincer Attachment
    • ROSBridge and ROSLIBJS
    • Recognizing Objects Based on Color and Size using OpenCV
    • Reinforcement Learning and its Applications
    • Robot Arm Transforms
    • Running Multi Robot in Gazebo and Real Robot
    • Simplifying_Lidar.md
    • Spawning Multiple Robots
    • Tips for using OpenCV and Cameras
    • Using ROS2 with Docker
    • What are some Computer Vision Tips
    • What are the ROS Message Types
    • Why does roscd go wrong?
    • Why is my robot not moving?
    • Working with localStorage in React for web clients
    • bouncy-objects.md
    • camera-performance-notes.md
    • camera_pitch.md
    • change_model_color.md
    • communicate-with-rosserial.md
    • contribution-guide.md
    • customize_tb3.md
    • diy-gazebo-world.md
    • fiducial-tips.md
    • fiducial_follows.md
    • gazebo_tf.md
    • gazebo_world.md
    • handy-commands.md
    • how-to-add-texture-to-sdf.md
    • how_to_get_correct_color_for_line_following.md
    • joint-controllers.md
    • laserscan-definition-modify.md
    • launch-files.md
    • lidar_placement_and_drift.md
    • logging.md
    • model_teleportation.md
    • modular_teleop.md
    • multi-robot-one-core.md
    • multirobot-map-merge.md
    • namespacing-tfs.md
    • object_detection_yolo_setup.md
    • publish_commands_to_commandline.md
    • quaternions.md
    • reset-world-gazebo.md
    • robot multitasking
    • ros_and_aws_integration.md
    • rosbridge.md
    • rviz-markers.md
    • sdf_to_urdf.md
    • spawn_model_terminal.md
    • using-conditionals-in-roslaunch.md
    • ROS and TkInter
    • Brandeis Robotics Utility
      • Controlling Robots from VNC
      • BRU Concepts
      • Commands
      • Standard ROSUTILS directory everywhere
      • script.md
    • Cosi119 Final Reports!
      • 2023
        • Autopilot
        • Bowling Bot
        • Cargo Claw
        • Command and Control Dashboard
        • Dynamaze
        • Guard Robot
        • Multi Robot Surveilance
        • Object Sorter
        • Robot Race
        • Typenator
      • 2022
        • NASCAR-style-turtlebot-racing.md
        • RoboTag.md
        • litter_picker.md
        • mini_scouter.md
        • not-play-catch.md
        • Waiterbot
      • 2020
        • Behavior Trees Investigatoin
        • Computer Vision Maze Solver
        • FiducialSLAM.md
        • Gesture Recognition
          • color.md
          • demo.md
          • gestures.md
          • kinect.md
          • kinectv2.md
          • leap-motion.md
          • leap_motion.md
          • local-camera.md
          • ssd.md
        • dangersigns.md
        • pathplanning.md
        • reinforcement-learning-racer.md
        • stalkerbot.md
      • 2019
        • robot-arm.md
      • Sample Project Template
      • past-gen-letters.md
    • Brandeis Rover Cluster
      • intro.md
      • operation-guide
        • architecture.md
        • cluster.md
        • faq.md
        • graphs
        • graphs.md
        • image.md
        • lifecycle.md
        • nodes.md
        • operating
          • cluster.md
          • users.md
        • sources.md
      • user-guide
        • code-editor.md
        • desktop-ui.md
        • getting-started.md
    • Robots in our Lab
      • linorobot
        • Platform Hardware Specs
        • connections.md
        • howto.md
        • stack.md
        • troubleshooting.md
        • validating.md
      • minirover
        • mrbuild.md
        • mrsetup.md
        • mrtroubleshooting.md
        • mruse.md
      • platform
      • platform.md
      • pupper
        • boundary-generation.md
        • controls.md
        • fiducial-detection.md
        • hardware.md
        • introduction.md
        • planning.md
        • software-overview.md
        • software-setup.md
        • testing.md
    • Campus Rover Packages
      • C3 Architecture Notes
      • Campus Rover V 3
      • campus-rover-4
        • Working with TIVAC
        • progress-report.md
      • demos
        • demo-script-fall-2018.md
        • gen2-demo-instructions.md
      • mutant
        • Description of Mutant
        • mutant-usage.md
        • mutantsetup.md
        • raspicam.md
      • navigation
        • costmap-clearing
          • costmap-clearing-part-1.md
          • costmap-clearing-part-2.md
        • cpu-usage-and-errors-in-navigation.md
        • fiducials.md
        • floormapping.md
        • lost-and-found.md
      • nodes.md
      • package-delivery
        • talker-node.md
      • state-management-services.md
      • voice
        • [voice integration.md](./cr-package/voice/voice integration.md)
        • voice-integration.md-.-cr-package-voice-voice-integration.md.md
        • voice.md
      • web-application
        • Integrating using Flask and ROS
        • flask.md
        • livemap.md
    • Lab Infrastructure
      • Tailscale VPN
      • Creating a bootable SSD
      • Danger Signs with Batteries and Chargers
      • How to use the Rover Cluster
      • Setting up SSH on a new robot
      • Turtlebot3s.md
      • copying-robot-sd-cards.md
      • external-ssd-instructions
      • external-ssd-instructions.md
      • linux_terminal_eduroam_setup.md
      • multi-robot-infrastructure.md
      • networking.md
      • our-robots.md
      • private-networking.md
      • ros-melodic.md
      • setup-hints.md
      • ubuntubrandeis.md
    • Our ROS Packages
      • Behavior Trees
        • Nodes
        • Visualization of the behavior Tree
        • basic_movement.md
        • build
          • defining_blackboard.md
          • defining_nodes.md
          • defining_references.md
        • custom_nodes
          • custom_action.md
          • custom_conditional.md
          • custom_update.md
        • included_nodes
          • action_nodes.md
          • conditional_nodes.md
          • included_nodes.md
          • parent_nodes.md
          • update_nodes.md
        • nodes
          • leaf_nodes.md
          • parent_nodes.md
      • Speech Recognition Report
Powered by GitBook

Copyright (c) Brandeis University

On this page
  • Issues
  • Database
  • Machine Learning model
  • GITHUB REPO

Was this helpful?

Edit on GitHub
Export as PDF
  1. FIIVA
  2. Cosi119 Final Reports!
  3. 2020
  4. Gesture Recognition

kinectv2.md

Previouskinect.mdNextleap-motion.md

Last updated 1 year ago

Was this helpful?

Intro

In Kinect.md, the previous generations dicussed the prospects and limitations of using a Kinect camera. We attempted to use the new Kinect camera v2, which was released in 2014.

figure1

Thus, we used the libfreenect2 package to download all the appropiate files to get the raw image output on our Windows. The following link includes instructions on how to install it all properly onto a Linux OS.

https://github.com/OpenKinect/libfreenect2

Issues

We ran into a lot of issues whilst trying to install the drivers, and it took about two weeks to even get the libfreenect2 drivers to work. The driver is able to support RGB image transfer, IR and depth image transfer, and registration of RGB and depth images. Here were some essential steps in debugging, and recommendations if you have the ideal hardware set up:

  • Even though it says optional, I say download OpenCL, under the "Other" option to correspond to Ubuntu 18.04+

  • If your PC has a Nvidia GPU, even better, I think that's the main reason I got libfreenect to work on my laptop as I had a GPU that was powerful enough to support depth processing (which was one of the main issues)

  • Be sure to install CUDA for your Nvidia GPU

  • Install OpenNI2 if possible

  • Make sure you build in the right location

Please look through this for common errors:

https://github.com/OpenKinect/libfreenect2/wiki/Troubleshooting

Although we got libfreenect2 to work and got the classifier model to locally work, we were unable to connect the two together. What this meant is that although we could use already saved PNGs that we found via a Kaggle database (that our pre-trained model used) and have the ML model process those gestures, we could not get the live, raw input of depth images from the kinect camera. We kept running into errors, especially an import error that could not read the freenect module. I think it is a solvable bug if there was time to explore it, so I also believe it should continued to be looked at.

However, also fair warning that it is difficult to mount on the campus rover, so I would just be aware of all the drawbacks with the kinect before choosing that as the primary hardware.

Database

https://www.kaggle.com/gti-upm/leapgestrecog/data

Machine Learning model

https://github.com/filipefborba/HandRecognition/blob/master/project3/project3.ipynb

  • What this model predicts: Predicted Thumb Down Predicted Palm (H), Predicted L, Predicted Fist (H), Predicted Fist (V), Predicted Thumbs up, Predicted Index, Predicted OK, Predicted Palm (V), Predicted C

GITHUB REPO

https://github.com/campusrover/gesture_recognition