LogoLogo
Navigate?
  • XXX!
    • Frequently Asked XQuestions
  • YYY!
    • Advanced: Help me troubleshoot weird build problems
    • Advanced: Help me troubleshoot weird camera problems
  • ZZZ!
    • Basic Chatgpt ROS interface
    • Camera Calibration
    • Claw Movement
    • Computer Vision With Yolo8a
    • Connecting to the robot
    • Creating and Executing Launch Files
  • FIIVA
    • Download File From vscode
    • Edge Detection
    • Finding HSV values for any color
    • Finding correct color for line following
    • GPS Data with iPhone (GPS2IP)
    • How can I calculate a better way to rotate?
    • How do I attach a Bluetooth headset?
    • How do I control AWS RoboMaker?
    • How do I control the Arm
    • How do I convert Imagenet to Darknet
    • How do I create a Gazebo world
    • How do I create a ROS UI with TkInter?
    • How do I creating a gazebo world
    • How do I deploy a Pytorch model our cluster?
    • How do I move a file from my vnc and back?
    • How do I read a BDLC motor spec sheet
    • How do I set up AprilTags
    • How do I set up a USB camera?
    • How do I set up the Astra Pro Depth Camera?
    • How do I setup to Coral TPU
    • How do I spawn an animated Human?
    • How do I use Alexa Flask-ASK for ROS
    • How do I use OpenCV and Turtlebot3 Camera
    • How do I use Parameters and Arguments in ROS?
    • How do I use a sigmoid function instead of a PID
    • How do I visualize the contents of a bag
    • How do you use UDP to communicate between computers?
    • How does GPS work?
    • How to Copy a MicroSD
    • How to add an SDF Model
    • How to approach computer vision
    • How to connect to multiple robots
    • How to define and Use your own message types
    • Interbotix Pincher X100 Arm
    • PID-guide.md
    • PX-100 Arm ROS2 Setup
    • Pincer Attachment
    • ROSBridge and ROSLIBJS
    • Recognizing Objects Based on Color and Size using OpenCV
    • Reinforcement Learning and its Applications
    • Robot Arm Transforms
    • Running Multi Robot in Gazebo and Real Robot
    • Simplifying_Lidar.md
    • Spawning Multiple Robots
    • Tips for using OpenCV and Cameras
    • Using ROS2 with Docker
    • What are some Computer Vision Tips
    • What are the ROS Message Types
    • Why does roscd go wrong?
    • Why is my robot not moving?
    • Working with localStorage in React for web clients
    • bouncy-objects.md
    • camera-performance-notes.md
    • camera_pitch.md
    • change_model_color.md
    • communicate-with-rosserial.md
    • contribution-guide.md
    • customize_tb3.md
    • diy-gazebo-world.md
    • fiducial-tips.md
    • fiducial_follows.md
    • gazebo_tf.md
    • gazebo_world.md
    • handy-commands.md
    • how-to-add-texture-to-sdf.md
    • how_to_get_correct_color_for_line_following.md
    • joint-controllers.md
    • laserscan-definition-modify.md
    • launch-files.md
    • lidar_placement_and_drift.md
    • logging.md
    • model_teleportation.md
    • modular_teleop.md
    • multi-robot-one-core.md
    • multirobot-map-merge.md
    • namespacing-tfs.md
    • object_detection_yolo_setup.md
    • publish_commands_to_commandline.md
    • quaternions.md
    • reset-world-gazebo.md
    • robot multitasking
    • ros_and_aws_integration.md
    • rosbridge.md
    • rviz-markers.md
    • sdf_to_urdf.md
    • spawn_model_terminal.md
    • using-conditionals-in-roslaunch.md
    • ROS and TkInter
    • Brandeis Robotics Utility
      • Controlling Robots from VNC
      • BRU Concepts
      • Commands
      • Standard ROSUTILS directory everywhere
      • script.md
    • Cosi119 Final Reports!
      • 2023
        • Autopilot
        • Bowling Bot
        • Cargo Claw
        • Command and Control Dashboard
        • Dynamaze
        • Guard Robot
        • Multi Robot Surveilance
        • Object Sorter
        • Robot Race
        • Typenator
      • 2022
        • NASCAR-style-turtlebot-racing.md
        • RoboTag.md
        • litter_picker.md
        • mini_scouter.md
        • not-play-catch.md
        • Waiterbot
      • 2020
        • Behavior Trees Investigatoin
        • Computer Vision Maze Solver
        • FiducialSLAM.md
        • Gesture Recognition
          • color.md
          • demo.md
          • gestures.md
          • kinect.md
          • kinectv2.md
          • leap-motion.md
          • leap_motion.md
          • local-camera.md
          • ssd.md
        • dangersigns.md
        • pathplanning.md
        • reinforcement-learning-racer.md
        • stalkerbot.md
      • 2019
        • robot-arm.md
      • Sample Project Template
      • past-gen-letters.md
    • Brandeis Rover Cluster
      • intro.md
      • operation-guide
        • architecture.md
        • cluster.md
        • faq.md
        • graphs
        • graphs.md
        • image.md
        • lifecycle.md
        • nodes.md
        • operating
          • cluster.md
          • users.md
        • sources.md
      • user-guide
        • code-editor.md
        • desktop-ui.md
        • getting-started.md
    • Robots in our Lab
      • linorobot
        • Platform Hardware Specs
        • connections.md
        • howto.md
        • stack.md
        • troubleshooting.md
        • validating.md
      • minirover
        • mrbuild.md
        • mrsetup.md
        • mrtroubleshooting.md
        • mruse.md
      • platform
      • platform.md
      • pupper
        • boundary-generation.md
        • controls.md
        • fiducial-detection.md
        • hardware.md
        • introduction.md
        • planning.md
        • software-overview.md
        • software-setup.md
        • testing.md
    • Campus Rover Packages
      • C3 Architecture Notes
      • Campus Rover V 3
      • campus-rover-4
        • Working with TIVAC
        • progress-report.md
      • demos
        • demo-script-fall-2018.md
        • gen2-demo-instructions.md
      • mutant
        • Description of Mutant
        • mutant-usage.md
        • mutantsetup.md
        • raspicam.md
      • navigation
        • costmap-clearing
          • costmap-clearing-part-1.md
          • costmap-clearing-part-2.md
        • cpu-usage-and-errors-in-navigation.md
        • fiducials.md
        • floormapping.md
        • lost-and-found.md
      • nodes.md
      • package-delivery
        • talker-node.md
      • state-management-services.md
      • voice
        • [voice integration.md](./cr-package/voice/voice integration.md)
        • voice-integration.md-.-cr-package-voice-voice-integration.md.md
        • voice.md
      • web-application
        • Integrating using Flask and ROS
        • flask.md
        • livemap.md
    • Lab Infrastructure
      • Tailscale VPN
      • Creating a bootable SSD
      • Danger Signs with Batteries and Chargers
      • How to use the Rover Cluster
      • Setting up SSH on a new robot
      • Turtlebot3s.md
      • copying-robot-sd-cards.md
      • external-ssd-instructions
      • external-ssd-instructions.md
      • linux_terminal_eduroam_setup.md
      • multi-robot-infrastructure.md
      • networking.md
      • our-robots.md
      • private-networking.md
      • ros-melodic.md
      • setup-hints.md
      • ubuntubrandeis.md
    • Our ROS Packages
      • Behavior Trees
        • Nodes
        • Visualization of the behavior Tree
        • basic_movement.md
        • build
          • defining_blackboard.md
          • defining_nodes.md
          • defining_references.md
        • custom_nodes
          • custom_action.md
          • custom_conditional.md
          • custom_update.md
        • included_nodes
          • action_nodes.md
          • conditional_nodes.md
          • included_nodes.md
          • parent_nodes.md
          • update_nodes.md
        • nodes
          • leaf_nodes.md
          • parent_nodes.md
      • Speech Recognition Report
Powered by GitBook

Copyright (c) Brandeis University

On this page

Was this helpful?

Edit on GitHub
Export as PDF
  1. FIIVA
  2. Campus Rover Packages
  3. navigation
  4. costmap-clearing

costmap-clearing-part-2.md

I investigated further with the max_range of camera and found that it was indeed 10 meters. When the camera is more than 10 meters away from an obstacle, the range readings in the /scan topic corresponding to the angle of the obstacle will be nan. Also, when an obstacle is within the minimum range of camera or the surface of the obstacle does not reflect any laser, the laser readings will be nan. These nan readings make the move base think there’s something wrong with laser and will not unmark an obstacle once it’s gone... I wrote a filter node called scan_filter.py which will replace the nan readings with 9.9 (a number slightly smaller than max_range), and publish to a new topic called /scan_filtered. Then I passes an argument to the move base in our launch file to make the cost map in move base subscribe to /scan_filtered. However, amcl should still subscribe to the original /scan topic because localization relies on unfiltered readings.

At first I changed all the nan readings to 9.90, but later Alex help me notice that the nan readings at the beginning and end of the array should not be changed, because they correspond to the laser being blocked by robot's body. Therefore I chose not to change these nan readings.

Now the robot will immediately unmark an obstacle on cost map once it is gone even the camera is out of range.

Huaigu Lin 11/21/2018

Previouscostmap-clearing-part-1.mdNextcpu-usage-and-errors-in-navigation.md

Last updated 1 year ago

Was this helpful?